ML Wiki
Machine Learning Wiki - A collection of ML concepts, algorithms, and resources.

Cost Matrix

Cost Matrix

Used for comparing two different models

  • A ‘‘cost matrix’’ is a matrix of the following form:
  $y = +$ $y = -$ $h_\theta(x) = +$ $C(+ +)$ $C(+ -)$   $h_\theta(x) = -$ $C(- +)$ $C(- -)$

In general case:

  • $C(i j)$ - a cost of classifying an example of class $j$ as class $i$
  • this way we can express that some mispredictions are very costly

Example

| | $y = +$ | $y = -$ | $h_\theta(x) = +$ | $C(+ | +) = -1$ | $C(+ | -) = 1$ || $h_\theta(x) = -$ | $C(- | +) = 100$ | $C(- | -) = 0$ |

  • we put $C(- | +) = 100$ because in this example false negatives are very costly | And assume we’re comparing two classifiers $C_1$ and $C_2$
  • below are their Contingency Tables
| + stats of $C_1$ || | $y = +$ | $y = -$ | $h_{C_1}(x) = +$ | 150 | 60 || $h_{C_1}(x) = -$ | 40 | 250 | - $\text{acc}(C_1) = \cfrac{150+250}{150+40+60+250} = 80\%$ - $\text{cost}(C_1) = -1 \cdot 150 + 1 \cdot 60 + 100 \cdot 40 + 0 \cdot 250 = 3910$ | + stats of $C_2$ || | $y = +$ | $y = -$ | $h_{C_2}(x) = +$ | 250 | 5 || $h_{C_2}(x) = -$ | 45 | 200 | - $\text{acc}(C_2) = \cfrac{250+200}{250+45+5+200} = 90\%$ - $\text{cost}(C_2) = -1 \cdot 250 + 1 \cdot 5 + 100 \cdot 45 + 0 \cdot 200 = 4255$

Selecting $C_1$

  • because $C_1$ has lower cost: $\text{cost}(C_1) < \text{cost}(C_2)$
  • even though $C_2$ has better accuracy: $\text{acc}(C_2) > \text{acc}(C_1)$

Sources