Line 72: Line 72:
  
 
why?
 
why?
* $\text{FOL}(M_2) \equiv \forall S, C, U \ \Big[ S_2.\text{Erasmus}(S, C, U) \ \Rightarrow \ \exists \ P, U' \ : \ \text{EuropeanStudent}(S)$ $\ \land \ \text{EnrolledInCourse}(S,C) \ \land \
+
* <math>\text{FOL}(M_2) \equiv \forall S, C, U \ \Big[ S_2.\text{Erasmus}(S, C, U) \ \Rightarrow \ \exists \ P, U' \ : \ \text{EuropeanStudent}(S)</math> <math>\ \land \ \text{EnrolledInCourse}(S,C) \ \land \
\text{PartOf}(C,P)$ $\ \land \ \text{OfferedBy}(P,U)
+
\text{PartOf}(C,P)</math> <math>\ \land \ \text{OfferedBy}(P,U)
\ \land \ \text{EuropeanUniversity}(U)$ $\ \land \ \text{RegisteredTo}(S, U') \ \land \ U \neq U' \Big]$
+
\ \land \ \text{EuropeanUniversity}(U)$ $\ \land \ \text{RegisteredTo}(S, U') \ \land \ U \neq U' \Big]</math>
 
* so, from fact $S_2.\text{Erasmus}(s, v_2, v_3)$ it follows that $\exists \ s, U' \ : \ \text{RegisteredTo}(s,U')$
 
* so, from fact $S_2.\text{Erasmus}(s, v_2, v_3)$ it follows that $\exists \ s, U' \ : \ \text{RegisteredTo}(s,U')$
 
* $\exists \ s \ : \ \text{RegisteredTo}(s, x)$, where $x$ is fixed is strictly weaker
 
* $\exists \ s \ : \ \text{RegisteredTo}(s, x)$, where $x$ is fixed is strictly weaker
Line 153: Line 153:
 
* $r_1$ is not a valid rewriting of $Q$
 
* $r_1$ is not a valid rewriting of $Q$
 
* expand $r_1$:
 
* expand $r_1$:
** $
+
** <math>\begin{array}{l l}
\begin{array}{l l}
+
 
\text{Exp} \big[ r_1(x) \big] \leftarrow & \text{NonEuropeanStudent}(s), \text{Program}(v_1), \\
 
\text{Exp} \big[ r_1(x) \big] \leftarrow & \text{NonEuropeanStudent}(s), \text{Program}(v_1), \\
 
& \text{EnrolledInProgram}(s,v_1), \text{OfferedBy}(v_1,x), \\
 
& \text{EnrolledInProgram}(s,v_1), \text{OfferedBy}(v_1,x), \\
Line 163: Line 162:
 
& \text{Program}(v_4), \text{OfferedBy}(v_4,v_3), \\
 
& \text{Program}(v_4), \text{OfferedBy}(v_4,v_3), \\
 
& \text{OfferedBy}(v_5,v_3), \text{MasterProgram}(v_5) \\
 
& \text{OfferedBy}(v_5,v_3), \text{MasterProgram}(v_5) \\
\end{array}
+
\end{array}</math>
$
+
 
* Now check the containment:
 
* Now check the containment:
 
* the following is the canonical database $D_{r_1(x)}$ for $\text{Exp} \big[ r_1(x) \big]$
 
* the following is the canonical database $D_{r_1(x)}$ for $\text{Exp} \big[ r_1(x) \big]$
Line 177: Line 175:
 
The final result is
 
The final result is
 
* the union of all valid rewritings
 
* the union of all valid rewritings
 
  
  
Line 188: Line 185:
  
 
== Sources ==
 
== Sources ==
* Web Data Management book [http://webdam.inria.fr/Jorge]
+
* [[Web Data Management (book)]]
  
 
[[Category:Data Integration]]
 
[[Category:Data Integration]]

Latest revision as of 16:10, 23 November 2015

Bucket Algorithm

This is an approach for query rewriting used in LAV Mediation

Overview

3 steps

  • determine local relations relevant to the query:
    • for each atom $G$ from the body of the global query $Q$
    • construct it's bucket - which groups the view atoms from which $G$ can be inferred
  • create candidate rewritings - by combining atoms within the same bucket
  • verification step
    • for each candidate, check if it's valid


Bucket Creation

  • let $G$ be a query atom
  • all atoms in $\text{bucket}(G)$ are
    • heads of mappings that have some atom $G^*$ in their bodies
    • s.t. $G$ can be inferred from $G^*$ (i.e. matched)

A atom $G$ of global query $Q$ is satisfied by local data if

  • $G$ can be matched to an atom $R_j$ in the body of some mapping $M_i$ and
  • the head of this mapping $M_i$ can be matched to the fact from the data sources

A matching between $G$ and atom $R_j$ of some mapping $M_i$ says

  • that the corresponding data source $S_i$ provides relevant information for query $Q$


Need some extra constraints to guarantee that $G$ can be logically inferred:

  • the $\text{Bucket}(G)$ contains a view atom $V$ only if
  • and atom in the body of $V$ can be matched with $G$ by a variable mapping s.t.
  • the variables mapped to the distinguished variables of $G$ are also distinguished variables in that view $V$ that defined the mapping


Bucket Creation Example

Consider this LAV mapping:

  • $M_1$: S1.Catalogue(U, P) $\subseteq$ FrenchUniversity(U), Program(P), OfferedBy(P, U), OfferedBy(P', U), MasterProgram(P')
  • $M_2$: S2.Erasmus(S, C, U) $\subseteq$ Student(S), EnrolledInCourse(S, C), PartOf(C, P), OfferedBy(P, U), EuropeanUniversity(U), EuropeanUniversity(U') RegisteredTo(S, U'), U $\neq$ U'
  • $M_3$: S3.CampusFr(S, P, U) $\subseteq$ NonEuropeanStudent(S), Program(P), EnrolledInProgram(S, P), OfferedBy(P, U), FrenchUniversity(U), RegisteredTo(S, U)
  • $M_4$: S4.Mundus(P, C) $\subseteq$ MasterProgram(P), OfferedBy(P, U), OfferedBy(P, U'), EuropeanUniversity(U), NonEuropeanUniversity(U'), PartOf(C, P)


Global Query:

$Q(x) \leftarrow \underbrace{\text{RegisteredTo}(s, x)}_\text{(1)}, \underbrace{\text{EnrolledInProgram}(s, p)}_\text{(2)}, \underbrace{\text{MasterProgram}(p)}_\text{(3)}.$

Consider an atom $G \equiv (1)$

  • variable $x$ is distinguished here
  • we can find two mappings $M_2$ and $M_3$: some body atom in them can be matched with $G$


For example, $M_3$

  • $G$ matches to $\text{RegisteredTo}(S, U)$
    • mapping is $S \mapsto s, U \mapsto x$
    • $U$ is distinguished in $M_3$
    • therefore, applying this mapping to the head of $M_3$ enforces the matching of $G$ and $\text{RegisteredTo}(S, U)$
    • $P$ is not present there, so mapping it to some fresh variable $v_1$: $P \mapsto v_1$
  • so, $S_3.\text{CampusFr}(s, v_1, x) \ \land \ \text{FOL}(M_3) \vDash \ \exists s: \text{RegisteredTo}(s, x) $
    • where
    • $\text{FOL}(M_3)$ logical meaning of $M_3$ (in the First Order Logic form)
    • $\vDash$ means "enforces"
  • and $S_3.\text{CampusFr}(s, v_1, x)$ is added to $\text{Bucket}(G)$
    • note mapping $P \mapsto v_1$ in $S_3.\text{CampusFr}(S, P, U)$


Consider mapping $M_2$

  • match between $G \equiv (1)$ and $\text{RegisteredTo}(S, U')$
  • mapping $S \mapsto s, U' \mapsto x$
  • but $U'$ is qualified existentially in this view
  • i.e. this mapping doesn't enforce matching of $G$ and $\text{RegisteredTo}(S, U')$
  • so, $S_2.\text{Erasmus}(s, v_2, v_3) \ \land \ \text{FOL}(M_2) \not \vDash \exists \ s : \text{RegisteredTo}(s, x)$


why?

  • [math]\text{FOL}(M_2) \equiv \forall S, C, U \ \Big[ S_2.\text{Erasmus}(S, C, U) \ \Rightarrow \ \exists \ P, U' \ : \ \text{EuropeanStudent}(S)[/math] [math]\ \land \ \text{EnrolledInCourse}(S,C) \ \land \ \text{PartOf}(C,P)[/math] [math]\ \land \ \text{OfferedBy}(P,U) \ \land \ \text{EuropeanUniversity}(U)$ $\ \land \ \text{RegisteredTo}(S, U') \ \land \ U \neq U' \Big][/math]
  • so, from fact $S_2.\text{Erasmus}(s, v_2, v_3)$ it follows that $\exists \ s, U' \ : \ \text{RegisteredTo}(s,U')$
  • $\exists \ s \ : \ \text{RegisteredTo}(s, x)$, where $x$ is fixed is strictly weaker
  • but it can't be satisfied, so $\exists \ s, U' \ : \ \text{RegisteredTo}(s,U')$ also isn't


Bucket Algorithm

Bucket($G$, $Q$, $M$):

  • Input:
    • An atom $G(u_1, ... , u_m)$ of the query $G$
    • a set of LAV mappings $M$
  • Output:
    • The set of view atoms from which $G$ can be inferred
  • $\text{Bucket}(G) \leftarrow \varnothing$
  • for each LAV mapping $S(\vec{x}) \subseteq Q(\vec{x}, \vec{y})$ from $M$
    • if $\exists$ atom $G(z_1, ..., z_m) \in Q(\vec{x}, \vec{y})$ s.t.
      • $\forall z_i: z_i \mapsto u_i$ and $z_i$ is distinguished in $G$ and $u_i$ is distinguished in $Q$
    • let $\Psi$ be the mapping $\forall z_i: z_i \mapsto u_i$
      • extend $\Psi$ by mapping the head variables $x_i \in \vec{x}$ s.t. $x_i \not \in \{ z_1, ..., z_m \}$ to new fresh variables:
      • $\forall x_i \in \vec{x} \ \land \ x_i \not \in \{ z_1, ..., z_m \} \ : \ x_i \mapsto v_k $ where $k$ is some counter
    • add $S \big( \Psi(\vec{x}) \big)$ to $\text{Bucket}(G)$:
      • $\text{Bucket}(G) \leftarrow \text{Bucket}(G) \cup S \big( \Psi(\vec{x}) \big)$
  • return $\text{Bucket}(G)$


Theorem:

  • let $G(u_1, ..., u_m) \in Q$ be an atom of the query $Q$
  • let $\vec{u}$ be a (possible empty) set of existential variables from $\{ u_1, ..., u_m \}$
  • let $m$ be a LAV mapping $S(\vec{x}) \subseteq Q(\vec{x}, \vec{y})$
  • then
  • $S(\vec{v}), \text{FOL}(m) \ \vDash \ \exists \ \vec{u} \ : \ G(u_1, ..., u_m)$ iff
  • $\exists H \in \text{Bucket}(G)$ s.t. $H \equiv S(\vec{x})$ up to renaming fresh variables


Example

  • query $Q(x) \leftarrow \underbrace{\text{RegisteredTo}(s, x)}_\text{(1)}, \underbrace{\text{EnrolledInProgram}(s, p)}_\text{(2)}, \underbrace{\text{MasterProgram}(p)}_\text{(3)}.$
  • the following buckets are obtained
    1. for $\text{RegisteredTo}(s, x) \ (1)$
      • $S_3.\text{CampusFr}(s, v_1, x)$
    2. for $\text{EnrolledInProgram}(s, p) \ (2)$
      • $S_3.\text{CampusFr}(s, p, v_2)$
    3. for $\text{MasterProgram}(p) \ (3)$
      • $S_1.\text{Catalogue}(v_3, v_4)$
      • $S_4.\text{Mundus}(p, v_5)$


Constructing Candidate Rewritings

Obtain candidates

  • by combining the view atoms to each bucket

Validation

  • it's possible that a candidate is not a valid rewriting of a query
  • by the Thm we know only that
    • each candidate rewriting entails each atom of the query in isolation
    • i.e. without taking into account the possible bindings of existential variables within the query


Expanding a rewriting $R$:

  • for each atom $A$ from the body of rewriting $R$
    • replace $A$ by the corresponding LAV mapping for $A$
    • new existential variables are introduced - to avoid naming conflicts
  • the result - the expansion of $R$: $\text{Exp} \big[ R(...) \big]$


Validation Algo:

  • for a rewriting $R$ find $\text{Exp} \big[ R(...) \big]$
  • check for containment: $\text{Exp} \big[ R(...) \big] \subseteq Q(...)$ where $Q$ is the global query (see CQ Containment)
  • if $\text{Exp} \big[ R(...) \big] \subseteq Q(...)$, then $R$ is a valid rewriting


Validation Example

We obtained these rewritings:

  • $r_1(x) \leftarrow S_3.\text{CampusFr}(s,v_1,x), S_3.\text{CampusFr}(s,p,v_2), S_1.\text{Catalogue}(v_3,v_4)$
  • $r_2(x) \leftarrow S_3.\text{CampusFr}(s,v_1,x), S_3.\text{CampusFr}(s,p,v_2), S_4.\text{Mundus}(p,v_5)$


Validation

  • $r_1$ is not a valid rewriting of $Q$
  • expand $r_1$:
    • [math]\begin{array}{l l} \text{Exp} \big[ r_1(x) \big] \leftarrow & \text{NonEuropeanStudent}(s), \text{Program}(v_1), \\ & \text{EnrolledInProgram}(s,v_1), \text{OfferedBy}(v_1,x), \\ & \text{FrenchUniversity}(x), \text{RegisteredTo}(s,x), \\ & \text{Program}(p), \text{EnrolledInProgram}(s,p), \\ & \text{OfferedBy}(p,v_2), \text{FrenchUniversity}(v_2), \\ & \text{RegisteredTo}(s,v_2), \text{FrenchUniversity}(v_3), \\ & \text{Program}(v_4), \text{OfferedBy}(v_4,v_3), \\ & \text{OfferedBy}(v_5,v_3), \text{MasterProgram}(v_5) \\ \end{array}[/math]
  • Now check the containment:
  • the following is the canonical database $D_{r_1(x)}$ for $\text{Exp} \big[ r_1(x) \big]$
  • lav-bucket-validation-candb.png
  • evaluation of $Q$ on this canonical database is empty: $Q\big( D_{r_1(x)} \big) \equiv \varnothing$
    • no way to assign variables $s$ and $p$
  • so it's not a valid rewriting
  • but $r_2$ is a valid rewriting


Final Result

The final result is

  • the union of all valid rewritings


See Also

Sources