Cramer’s Rule
This is a method for finding a Matrix Inverse and for solving a System of Linear Equations.
Finding Inverse
The formula is $A^{-1} = \cfrac{1}- $| A|$ is the Determinant of $A$ |- $C$ is the Cofactors matrix of $A$
$2 \times 2$ case: Motivation
Let $A$ be an $2 \times 2$ matrix
- $A = \begin{bmatrix}
a_{11} & a_{12}
a_{21} & a_{22}
\end{bmatrix}$ - let’s find $A^{-1}$ with Gauss-Jordan elimination (see Inverse Matrices)
- $\left[ \begin{array}{cc| cc} |a_{11} & a_{12} & 1 & 0 \
a_{21} & a_{22} & 0 & 1
\end{array} \right] \sim $ row 2: $\text{row $2$} - \cfrac{a_{21}}{a_{11}} \text{row $1$}$ - $\sim \left[ \begin{array}{cc| cc} |a_{11} & a_{12} & 1 & 0 \
0 & a_{22} - a_{12} \cfrac{a_{21}}{a_{11}} & - \cfrac{a_{21}}{a_{11}} & 1
\end{array} \right] \sim $ now divide first row by $a_{11}$ and multiply second by $a_{11}$ - $\sim \left[ \begin{array}{cc| cc} |1 & \cfrac{a_{12}}{a_{11}} & \cfrac{1}{a_{11}} & 0 \
0 & a_{11} a_{22} - a_{12} a_{21} & - a_{21} & a_{11}
\end{array} \right] =$ now note that $a_{11} a_{22} - a_{12} a_{21} = | A |$, so | - $ = \left[ \begin{array}{cc| cc} |1 & \cfrac{a_{12}}{a_{11}} & \cfrac{1}{a_{11}} & 0 \ 0 & | A| & - a_{21} & a_{11} \ |\end{array} \right] \sim $ let’s divide row 2 by $| A|$ | - $ \sim \left[ \begin{array}{cc| cc} |1 & \cfrac{a_{12}}{a_{11}} & \cfrac{1}{a_{11}} & 0 \ 0 & 1 & - \cfrac{a_{21}}\end{array} \right] \sim $ now for row 1: $\text{row $1$} - \cfrac{a_{12}}{a_{11}} \text{row $2$}$ -
$ \sim \left[ \begin{array}{cc cc} 1 & 0 & \cfrac{a_{22}}0 & 1 & - \cfrac{a_{21}}\end{array} \right]$
- $\left[ \begin{array}{cc| cc} |a_{11} & a_{12} & 1 & 0 \
a_{21} & a_{22} & 0 & 1
- so $A^{-1} = \cfrac{1}a_{22} & - a_{12} \
- a_{21} & a_{11}
\end{bmatrix}$ - now we can note that the Cofactors of $A$ are: $C_{11} = a_{22}, C_{12} = -a_{21}, C_{21} = - a_{12}, C_{22} = a_{11}$
- we can put all cofactors in one matrix $C = \begin{bmatrix}
C_{11} & C_{12}
C_{21} & C_{22}
\end{bmatrix} = \begin{bmatrix} a_{22} & -a_{21}
-a_{12} & a_{11}
\end{bmatrix} = \begin{bmatrix} a_{22} & - a_{12} \ - a_{21} & a_{11}
\end{bmatrix}^T$ -
this is the same as in the formula for $A^{-1}$, but transposed - so $A^{-1} = \cfrac{1}
General Case: Check
Does it always work? Let’s check
- if $A^{-1} = \cfrac{1}- or, $\underbrace{\begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n}
a_{21} & a_{22} & \cdots & a_{2n}
\vdots & \vdots & \ddots & \vdots
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{bmatrix}}{A} \underbrace{\begin{bmatrix} C{11} & C_{21} & \cdots & C_{n1}
C_{12} & C_{22} & \cdots & C_{n2}
\vdots & \vdots & \ddots & \vdots
C_{1n} & C_{2n} & \cdots & C_{nn}
\end{bmatrix}}{C^T} = \underbrace{\begin{bmatrix} | A| & 0 & \cdots & 0 \ | 0 & | A| & \cdots & 0 \ | \vdots & \vdots & \ddots & \vdots
0 & 0 & \cdots & | A| \ |\end{bmatrix}}- so why do we have zeros off the diagonal?- $\begin{bmatrix}
a_{11} & a_{12}
a_{21} & a_{22}
\end{bmatrix} \begin{bmatrix} C_{11} & C_{21}
C_{12} & C_{22}
\end{bmatrix} = \begin{bmatrix} \boxed{a_{11} C_{11}} + a_{12} C_{12} & a_{11} C_{21} + a_{12} C_{22}
a_{21} C_{11} + a_{22} C_{12} & a_{21} C_{21} + \boxed{a_{22} C_{22}}
\end{bmatrix}$ -
need to check that $\text{row $i$} \times \text{cofactor of $i$} = A $ - and $\text{row $i$} \times \text{cofactors of $j$} = 0$ ($i \ne j$) -
then we’ll have $ A $ only on the diagonal
- $\begin{bmatrix}
a_{11} & a_{12}
$\text{row $i$} \times \text{cofactors of $i$} = | A|$ |- $\text{row $i$} = \begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \end{bmatrix}$
- $\text{cofactors of $i$} = \begin{bmatrix} C_{i1} \ C_{i2} \ \vdots \ C_{in} \end{bmatrix}$
- so $\text{row $i$} \times \text{cofactors of $i$} = \sum\limits_k a_{ik} C_{ik}$
-
note that this is the Cofactors formula for calculating the determinant - thus, $\text{row $i$} \times \text{cofactors of $i$} = A $
$\text{row $i$} \times \text{cofactors of $j$} = 0$ for $i \ne j$
- let’s have a look what this dot product calculates
- take row $i$ of $A$ and row $j$ of $C$ (i.e. column $j$ of $C^T$)
- $\text{row $i$} \times \text{cofactors of $j$} = \begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \end{bmatrix} \begin{bmatrix} C_{j1} \ C_{j2} \ \vdots \ C_{jn} \end{bmatrix} = \sum\limits_k a_{ik} C_{jk}$
-
this is a cofactors formula for a new matrix $A^*$ where the row $i$ of $A$ is copied to row $j$ of $A$. So this new matrix has two equal rows, therefore $ A^* = 0$ - and thus, $\text{row $i$} \times \text{cofactors of $j$} = 0$
so we showed that
-
$A \, C^T = A \, I$ - therefore, $A^{-1} = \cfrac{1}
Cramer’s Rule: Solving $A \mathbf x = \mathbf b$
Now since we can find the inverse of $A^{-1}$, we can solve the system $A \mathbf x = \mathbf b$
- let $A$ be $n \times n$ invertible matrix
- we know that $A^{-1} = \cfrac{1}- let’s have a look at the components of $\mathbf x$
- $x_1 = \cfrac{ (C^T \mathbf b)1 } - $(C^T \mathbf b)_1 = (\text{column 1 of $C$})^T \mathbf b = C{11} b_1 + C_{21} b_2 + \ … $
- any time we multiply something by cofactors, it’s the same as getting a determinant of some matrix
- in this case, we’re calculating the determinant of $B_1$ - matrix $A$ with column 1 replaced with $\mathbf b$
- thus, $x_1 = \cfrac b_{1} & a_{12} & \cdots & a_{1n}
b_{2} & a_{22} & \cdots & a_{2n}
\vdots & \vdots & \ddots & \vdots
b_{n} & a_{n2} & \cdots & a_{nn}
\end{vmatrix} / \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n}
a_{21} & a_{22} & \cdots & a_{2n}
\vdots & \vdots & \ddots & \vdots
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix}$
- and generally, $x_i = \cfrac This is known as the ‘'’Cramer’s Rule’’’
Efficiency
This is known as not very practical method for computing the inverse or for solving the system
- some more computationally efficient methods are Gaussian Elimination (= LU Decomposition)
Sources
- Linear Algebra MIT 18.06 (OCW)
- Strang, G. Introduction to linear algebra.
- http://en.wikipedia.org/wiki/Cramer%27s_rule