Suppose we have two vectors $\mathbf u \in \mathbb R^m$ and $\mathbf v \in \mathbb R^n$. Then multiplication $\mathbf u \times \mathbf v^T$ gives us a matrix $A = \mathbf u \cdot \mathbf v^T$, $A \in \mathbb R^{m \times n}$
$\mathbf u \times \mathbf v^T = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \big[1 \ 2 \big] = \begin{bmatrix} 1a & 2a \\ 1b & 2b \\ 1c & 2c \end{bmatrix}$
This matrix $A$ is a special matrix:
Suppose we want to project to a line $\mathbf u$