ML Wiki
Machine Learning Wiki - A collection of ML concepts, algorithms, and resources.

Redo Logging

Redo Logging

This is a Database Transaction Log for dealing with Crash Recovery

Also called ‘‘deferred modification’’

  • we don’t record the old value, but the new value
  • instead of undoing actions, we will do them
  • $\langle T_i, \text{commit} \rangle$ record may appear earlier than the actual modification is written to disk
  • but as soon as modified data is flushed, we write $\langle T_i, \text{end} \rangle$

Example

| Transaction $T_1$ | Log | Comment | | $\langle T_1, \text{start} \rangle$ | when the transaction starts || read($A, t$); $t \leftarrow t \times 2$; | | || write($A, t$) | $\langle T_1, A, 16 \rangle$ | $A$’s new value is 16 || read($B, t$); $t \leftarrow t \times 2$; | | || write($B, t$) | $\langle T_1, B, 16 \rangle$ | $B$’s new value is 16 || | $\langle T_1, \text{commit} \rangle$ | record in log appear earlier then actual modification || output($A$) | | || output($B$) | | now all modifications are on disk || | $\langle T_1, \text{end} \rangle$ | transaction finishes |

Rules

Redo Logging Rules

  • for every action we keep a redo log with new values
  • before a DB item $X$ is flushed to disk, all log records for transactions $T_i$ that have modified $X$ (including $\langle T_i, \text{commit} \rangle$) must be on disk
  • flush the log on commit
  • write $\langle T_i, \text{end} \rangle$ only when all modified BD items are on disk

Note that we cannot go to the previous state with this approach: no rollback

Redo Logging Recovery Rules

$\langle T_i, \text{commit} \rangle$ means

  • user knows that the transaction was executed correctly
  • even if now some error happens we have to ensure that the DB state is the state that the user expects after the transaction happens

$\langle T_i, \text{end} \rangle$ says

  • the results are on disk - no need to redo anything

Redo(log $L$)

  • let $S$ be set of all transactions $T_i$ with $\langle T_i, \text{commit} \rangle \in L$ but without $\langle T_i, \text{end} \rangle$
  • for each $T_i \in S$ and for each $\langle T_i, \text{commit} \rangle \in L$ in forward order (earliest $\to$ latest)
    • write($X, v$)
    • output($X$) (write and ensure the modifications appear on disk)

Non-Quiescent Checkpoint

Idea similar to Undo Logging, but different semantics

Algo for creating checkpoints:

  • write a log records $\langle \text{start ckpt} (T_1, …, T_k) \rangle$
    • $T_1, …, T_k$ are active not-committed transactions
  • flush the log
  • write to disk modifications of all transactions T_i that have $\langle T_i, \text{commit} \rangle$ record, but don’t have $\langle T_i, \text{end} \rangle$ records
    • it means the modifications are still in memory buffers and have not been flushed to disk yet
  • one the modifications are written to disk, write $\langle \text{end ckpt} \rangle$ and flush the log

Example

| $\langle T_1, \text{start} \rangle$ | | || $\langle T_1, A, 5 \rangle$ | | || $\langle T_2, \text{start} \rangle$ || rowspan=”11” bgcolor=”red” | $\uparrow$ || || $\langle T_1, \text{commit} \rangle$ | || $\langle T_2, B, 10 \rangle$ | || bgcolor=”green” | $\langle \text{start ckpt} (T_2) \rangle$ || $T_2$ is the only active transaction (no $\langle T_2, \text{commit} \rangle$ record) || $\langle T_2, C, 15 \rangle$ | || $\langle T_3, \text{start} \rangle$ | || $\langle T_3, D, 20 \rangle$ | || $\langle T_1, \text{end} \rangle$ | $T_1$ had $\langle T_1, \text{commit} \rangle$, but didn’t have $\langle T_1, \text{end} \rangle$ when $\langle \text{start ckpt} \rangle$ was added || $\langle \text{end ckpt} \rangle$ | now $T_1$ ended, it means we can end the checkpoint || $\langle T_2, \text{commit} \rangle$ | || $\langle T_3, \text{commit} \rangle$ | || FAILURE | | |

We redo all transactions that:

  • were active and not-committed when the checkpoint begun
  • or started later - after the checkpoint begun

In this case

  • these transactions are $T_2$ and $T_3$
  • i.e. we need to read the log records till we see $\langle T_2, \text{start} \rangle$
    • which was before $\langle \text{start ckpt} (T_2) \rangle$
  • anything else is already on disk for sure

To recover, we :

  • scan backwards till we see the $\langle \text{end ckpt} \rangle$ and corresponding $\langle \text{start ckpt} (T_1, …, T_k) \rangle$
  • then we scan a little bit more upwards till we see all records $\langle T_1, \text{start} \rangle … \langle T_k, \text{start} \rangle$
  • redo them from this point

If we see both $\langle \text{start ckpt} (T_1, …, T_k) \rangle$ and $\langle \text{end ckpt} \rangle$ it means

  • while scanning back when see $\langle \text{start ckpt} (T_1, …, T_k) \rangle$ after $\langle \text{end ckpt} \rangle$ it tells us that:
  • all transactions $T_j$ that
    • had committed before $\langle \text{start ckpt} (T_1, …, T_k) \rangle$
    • but their modifications had not been flushed to disk (they didn’t have $\langle T_j, \text{end} \rangle$ records)
    • they would write all their modifications to disk
    • otherwise there would not be $\langle \text{end ckpt} \rangle$ record

Example 2

| $\langle T_1, \text{start} \rangle$ | || $\langle T_1, A, 5 \rangle$ | || $\langle T_2, \text{start} \rangle$ || rowspan=”10” bgcolor=”red” | $\uparrow$ || $\langle T_1, \text{commit} \rangle$ || $\langle T_2, B, 10 \rangle$ || bgcolor=”green” | $\langle \text{start ckpt} (T_2) \rangle$ || $\langle T_2, C, 15 \rangle$ || $\langle T_3, \text{start} \rangle$ || $\langle T_3, D, 20 \rangle$ || $\langle T_1, \text{end} \rangle$ || $\langle \text{end ckpt} \rangle$ || $\langle T_2, \text{commit} \rangle$ || FAILURE | || $\langle T_3, \text{commit} \rangle$ | |

This case a little bit different

  • we still have to re-do $T_2$, but not $T_3$
  • $T_3$’s commit record is not on disk - don’t need to redo it

Example 3

If a failure occurs after $\langle \text{start ckpt} (T_2) \rangle$ but before $\langle \text{end ckpt} \rangle$

  • you’ll have to redo from the previous complete $\langle \text{start ckpt} (…) \rangle$
  • (or from the beginning of the log)
$\langle T_1, \text{start} \rangle$   rowspan=”10” bgcolor=”red” $\uparrow$   $\langle T_1, A, 5 \rangle$   $\langle T_2, \text{start} \rangle$   $\langle T_1, \text{commit} \rangle$   $\langle T_2, B, 10 \rangle$   bgcolor=”green” $\langle \text{start ckpt} (T_2) \rangle$   $\langle T_2, C, 15 \rangle$   $\langle T_3, \text{start} \rangle$   $\langle T_3, D, 20 \rangle$   $\langle T_1, \text{end} \rangle$   FAILURE  

Note:

  • for the Non-Quiescent Check Logging records $\langle T_i, \text{end} \rangle$ are redundant
  • the checkpoints give us the same information

Drawbacks and Benefits

  • (-) need to keep all modified blocks in memory until the commit happens
  • (+) good for backups: just replay the logs on another DB instance

Undo/Redo Logging

Undo/Redo Logging is the combination of Undo Logging and Redo Logging

Exercises

Sources