ML Wiki
Machine Learning Wiki - A collection of ML concepts, algorithms, and resources.

Matrix Vector Spaces

Matrix Spaces

A Matrix space is a Vector Space where elements are matrices

E.g. Space $M$ - $3 \times 3$ matrices

  • any $3 \times 3$ matrix an element of this space $M$ (“vector” in $M$)
  • we can multiply by a scalar and add two matrices - which is why we can call it “vector space”

Subspaces

Subspaces of the matrix space should form a space on their own.

  • What are subspaces of the matrix space?
  • All upper-triangular matrices
  • all symmetric matrices
  • diagonal matrices (upper-triangular $\cup$ symmetric)

Bases

What about bases for such spaces?

E.g. $M$: $3 \times 3$ matrices:

  • $\begin{bmatrix} 1 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0
    \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0
    \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \ 0 & 0 & 0 \ 0 & 0 & 0
    \end{bmatrix}, … , \begin{bmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 1
    \end{bmatrix}$
  • $\text{dim}\big( M \big) = 9$

$S$ - subspace of $M$, symmetric $3 \times 3$ matrices

  • $\text{dim}\big( S \big) = 6$ - because only 6 elements change in this subspace

$U$ - subspace of $M$ with upper-diagonal matrices

  • $\text{dim}\big( U\big) = 6$ as well - same reason (but have zeros for the upper corner)

$S \cup U$ - symmetric and upper-diagonal $\Rightarrow$ diagonal matrices

  • $\text{dim}\big( S \cup U\big) = 3$

$S \cap U$

  • not a subspace:
  • $S$ is 6-dim, $U$ is 3-dim

$S + U$

  • any matrix from $S$ plus any matrix from $U$
  • this way we can get possible matrix
  • so it’s also a subspace
  • $\text{dim}\big( S + U\big) = 9$

rule:

  • $\text{dim}\big( S \big) + \text{dim}\big( U \big) = \text{dim}\big( S \cap U \big) + \text{dim}\big( S + U \big)$

Inner Product

How do we define the inner product?

  • Element-wise: $\langle A, B \rangle = \sum_{ij} a_{ij} b_{ij}$
  • then the norm based on this product is $| A |_F = \langle A, A \rangle$, it’s called the Frobenius Norm.

Sources

  • Linear Algebra MIT 18.06 (OCW)
  • Kalman, Dan. “A singularly valuable decomposition: the SVD of a matrix.” (1996). [http://www.math.washington.edu/~morrow/498_13/svd.pdf]