Homogeneous Linear Systems $A\mathbf x = \mathbf 0$

Suppose we have a system $A\mathbf x = \mathbf 0$. Such a system is called homogeneous - because we have $\mathbf 0$ on the right side of the system.


Solving $A\mathbf x = \mathbf 0$

How to solve such a system?

  • The solutions to this system form Nullspace $N(A)$
  • we can solve it with Gaussian Elimination. The elimination doesn't change $N(A)$ - the solutions remain the same if we linearly combine the rows
  • but note that the elimination changes the Column Space $C(A)$ of $A$


Elimination and Echelon Form

Suppose we have a matrix $A = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 8 & 10 \\ \end{bmatrix}$

  • note that row 3 is a linear combination of row 1 and row 2 (the system is not linearly independent)
  • while doing the elimination we'll notice it

Let's do it:

  • [math]\begin{bmatrix} \boxed 1 & 2 & 2 & 2 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 8 & 10 \\ \end{bmatrix} \to \begin{bmatrix} \boxed 1 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 2 & 4 \\ \end{bmatrix}[/math]
  • we have 0's in the second column, but in the next column there's a non-zero value - can take it as a pivot!
  • [math]\begin{bmatrix} \boxed 1 & 2 & 2 & 2 \\ 0 & 0 & \boxed 2 & 4 \\ 0 & 0 & 2 & 4 \\ \end{bmatrix} \to \begin{bmatrix} \boxed 1 & 2 & 2 & 2 \\ 0 & 0 & \boxed 2 & 4 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix} = U[/math]
  • it's not really an upper-triangular matrix, but we still can call it $U$
  • this $U$ is in the echelon form (or "staircase" form)
  • fff8737512334debaf8ae3f1878cd8b3.png


rank $r$ of a matrix is the number of Pivot variables in the echelon form


During the elimination the nullspace $N(A)$ of $A$ doesn't change

  • so systems $A\mathbf x = \mathbf 0$ and $U \mathbf x = \mathbf 0$ have the same solutions $\mathbf x$
  • the column with pivot variables are called pivot columns, there are $r$ of them
  • the rest of the columns are called free columns, there are $n - r$ of them
  • fcb1dcc9e07345df9fd4c6624d8038a7.png


Now let's try to solve this system $\left\{\begin{array}{rl} x_1 + 2 x_2 + 2 x_3 + 2 x_4 & = 0 \\ 2 x_3 + 4 x_4 & = 0 \\ \end{array}\right.$

We can find some solutions for pivot variables, but what to do with the free ones?

  • They can have any value
  • So we may assign something to them and then solve the system with backsubstitution for the pivot variables
  • E.g. let's assign 1 and 0 to $x_2$ and $x_4$
    • we have [math]\mathbb x = \begin{bmatrix} x_1 \\ 1 \\ x_3 \\ 0 \end{bmatrix}[/math], then we solve the system and get [math]\mathbb x = \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}[/math]
    • we can also take any linear combination of this solution, so we should write [math]\mathbb x = c_1 \cdot \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}[/math]
  • what if we assign different values to $x_2$ and $x_4$?
    • Can assign this way: [math]\mathbb x = \begin{bmatrix} x_1 \\ 0 \\ x_3 \\ 1 \end{bmatrix}[/math], then we solve and get [math]\mathbb x = \begin{bmatrix} 2 \\ 0 \\ -2 \\ 1 \end{bmatrix}[/math]
    • so we have another "special" solution [math]\mathbb x = c_2 \cdot \begin{bmatrix} 2 \\ 0 \\ -2 \\ 1 \end{bmatrix}[/math]
  • so the final solution to this system will be
    • [math]\mathbf x = c_1 \cdot \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + c_2 \cdot \begin{bmatrix} 2 \\ 0 \\ -2 \\ 1 \end{bmatrix}[/math]
    • this is the Nullspace $N(A)$ of the matrix $A$


Row Reduced Echelon Form

Can we do simpler?

Suppose we have matrix $A$ that we reduced to [math]U = \begin{bmatrix} \boxed 1 & 2 & 2 & 2 \\ 0 & 0 & \boxed 2 & 4 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix}[/math]

  • can we clean it further? Can try to clean the pivot columns upwards - so there's only one 1 and the rest are 0's
  • [math]U = \begin{bmatrix} \boxed 1 & 2 & 2 & 2 \\ 0 & 0 & \boxed 2 & 4 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix} \to \begin{bmatrix} \boxed 1 & 2 & 0 & -2 \\ 0 & 0 & \boxed 1 & 4 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix} = R[/math]
  • $R$ is a Row Reduced Echelon Form (RRFR) of $A$
  • d02b7166629a482fa5e29591cf5d6baf.png
  • note that if we consider only the pivot rows and columns, we see that we have the identity matrix [math]\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix}[/math]


So now if we take a look at our new system, we have

  • [math]\left\{\begin{array}{rl} x_1 + 2 x_2 - 2 x_4 & = 0 \\ x_3 + 2 x_4 & = 0 \\ \end{array}\right.[/math]
  • $A \mathbf x = \mathbf 0$, $U \mathbf x = \mathbf 0$ and $R \mathbf x = \mathbf 0$ - all have the same solutions $\mathbf x$!


Let's rearrange columns in $R$ so first we have the pivot columns, and then the free columns

  • [math]\begin{bmatrix} 1 & 0 & 2 & -2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix}[/math]
  • now can distinguish the $I$ part (identity) and the $F$ part (free)
  • 13b2e543918546ee99bb2ee4de2b5c9a.png
  • these $I$ and $F$ appear in the "special" solutions of the $U \mathbf x = \mathbf 0$!
  • only $F$ comes with the minus sign:
  • e626bf0a7f1946e2a60df299631aee40.png


Why does it happen?

  • assume we have a RREF [math]R = \begin{bmatrix} I & F \\ 0 & 0 \\ \end{bmatrix}[/math]
  • we have $r$ pivot columns, $n-r$ free columns and $r$ pivot rows
  • we want to solve $R\mathbf x = \mathbf 0$. What are the "special" solutions?
  • let's create a Nullspace matrix $N$, [math]N = \begin{bmatrix} -F \\ I \end{bmatrix}[/math]
  • Columns of $N$ are our special solutions
  • let's take a closer look at one of these columns [math]\begin{bmatrix} \mathop{\mathbf x_\text{pivot}}\limits_{|}^{|} \\ \mathop{\mathbf x_\text{free}}\limits_{|}^{|} \\ \end{bmatrix}[/math]. The system is [math]\begin{bmatrix} I & F \\ 0 & 0 \\ \end{bmatrix} \cdot \begin{bmatrix} \mathop{\mathbf x_\text{pivot}}\limits_{|}^{|} \\ \mathop{\mathbf x_\text{free}}\limits_{|}^{|} \\ \end{bmatrix} = \mathbf 0[/math]
  • [math]\Rightarrow I x_\text{pivot} + F x_\text{free} = \mathbf 0[/math] or [math]x_\text{pivot} = - F x_\text{free}[/math]
  • where for $x_\text{free}$ we use "special" choices $\mathbf e_1, \mathbf e_2, ...$ (columns of $I$)


Sources