ML Wiki
Machine Learning Wiki - A collection of ML concepts, algorithms, and resources.

PROMETHEE/Properties

PROMETHEE/Properties

The PROMETHEE Property

Note that this pair-wise gives us Valued Preference Graph

  • Image
  • this is local information, but we want to get the global final rankings

Suppose that $S$ is some method for computing global scores

  • $s_i = S(a_i)$ and $s_j = S(a_j)$
  • we use these scores to establish the global ranking

We expect that the following constraint is satisfied:

  • $\pi_{ij} - \pi_{ji} = \pi(a_i, a_j) - \pi(a_j, a_i) \approx s_i - s_j$
  • the difference between alternatives should be reflected in the global scores
  • and the difference in global scores should be as close as possible to the initial differences

; The PROMETHEE property:

  • the netflow score $\Phi(a_i)$ is a centered score $s_i$ ($\forall i$) that minimizes the following $Q$:
  • $Q = \sum_{i=1}^n \sum_{j=1}^n \big[ (s_i - s_j) - (\pi_{ij} - \pi_{ji}) \big]^2 $
  • i.e. $Q$ is the sum of squared deviation and we want to minimize it

Proof (La Grange Optimization)

  • let $L(s_1, …, s_n, \lambda)$ be the function we want to minimize
    • $L(s_1, …, s_n, \lambda) = \sum_{i=1}^n \sum_{j=1}^n \big[ (s_i - s_j) - (\pi_{ij} - \pi_{ji}) \big]^2 - \lambda \cdot \sum_{i=1}^n s_i$
    • note that due to symmetry when we fix all variables expect a certain $s_i$ we can rewrite the double sum as twice the single sum:
    • $L {s_i} = 2 \cdot \sum{j=1,i \ne j}^n \big[ (s_i - s_j) - (\pi_{ij} - \pi_{ji}) \big]^2 - \lambda \cdot \sum_{i=1}^n s_i$ - to optimize we take all partial derivatives plus the Lagrangian and equal them to 0:
    • $\forall s_i: \cfrac{\partial L(s_1, …, s_n, \lambda)}{\partial s_i} = 0$
    • $\forall s_i: \cfrac{\partial L(s_1, …, s_n, \lambda)}{\partial \lambda} = 0$
  • optimization:
    • $\cfrac{\partial L}{\partial s_i} = 4 \cdot \sum_{j \ne i} \big[ (s_i - s_j) - (\pi_{ij} - \pi_{ji}) \big] - \lambda = …$ (open the brackets for the sum)
    • $… = 4 \cdot \left[ \sum_{j \ne i} s_i - \sum_{j \ne i} s_j - \sum_{j \ne i} (\pi_{ij} - \pi_{ji}) \right] - \lambda = …$
    • $… = 4 \cdot \left[ (n - 1) \cdot s_i - \sum_{j \ne i} s_j - \sum_{j \ne i} (\pi_{ij} - \pi_{ji}) \right] - \lambda = …$ (by property $\sum_i s_i = 0$, $s_i = \sum_{j \ne i} s_j$ )
    • $… = 4 \cdot \left[ ns_i - \sum_{j \ne i} (\pi_{ij} - \pi_{ji}) \right] - \lambda = 0$
  • therefore
    • $s_i = \cfrac{1}{n} \cdot \sum_{j \ne i} (\pi_{ij} - \pi_{ji}) = \cfrac{n-1}{n} \Phi(a_i)$
    • i.e. the scores $s_i$ that satisfy the desired property are directly proportional to the netflow scores
    • this is a justification why calculating netflow scores is a good idea

Property 1

; $\Phi(a_i) \in [-1, 1]$ Easy to see that by the way we construct $\Phi(a_i)$

Property 2

Want to show that $\sum_{i = 1}^N \Phi(a_i) = 0$

  • $N$ - the number of alternatives
  • Let’s show this property by induction

; Proof (by induction)

Basis: $N = 2$

  • $\Phi(a_1) + \Phi(a_2) = \cfrac{1}{1} [\pi (a_1, a_2) - \pi (a_2, a_1) ] + \cfrac{1}{1} [\pi (a_2, a_1) - \pi (a_1, a_2) ] = 0$

Hypothesis:

  • Assume it holds for $N = k$

Induction step: Show that it also holds for $N = k + 1$

  • $\sum_{i = 0}^{k+1} \Phi (a_i) = …$ (expand $\Phi$)
  • $… \sum_{i = 0}^{k + 1} \left[ \cfrac{1}{k} \sum_{j = 1}^{k + 1} [ \pi(a_i, a_j) - \pi(a_j, a_i) ] \right] = \ … $
    • take one element of the outer sum outside
    • note that we don’t care about the case when $i=j$ since the difference $\pi(a_i, a_i) - \pi(a_1, a_i)$ is always 0
  • $… \ = \cfrac{1}{k} \sum_{i = 1}^{{\color{blue}{k}}} \sum_{j = 1}^{k + 1} [ \pi(a_i, a_j) - \pi(a_j, a_i) ] + \cfrac{1}{k} \sum_{j=1}^{k+1} [ \pi(a_{k+1}, a_j) - \pi(a_j, a_{k+1}) ] = \ …$
    • now take all $k+1$th elements outside of that sum as well
  • $…\ = \cfrac{1}{k} \sum_{i = 1}^{k} \sum_{j = 1}^{{\color{blue}{k}}} [ \pi(a_i, a_j) - \pi(a_j, a_i) ] + \ … $
    • $ … \ + \cfrac{1}{k} \sum_{j=1}^{k+1} [ \pi(a_{k+1}, a_j) - \pi(a_j, a_{k+1}) ] + \cfrac{1}{k} \sum_{i=1}^{k+1} [ \pi(a_i, a_{k+1}) - \pi(a_{k+1}, a_i) ] = \ …$
  • $… \ = \cfrac{k-1}{k} \underbrace{ \left[ \cfrac{1}{k-1} \sum_{i = 1}^{k} \sum_{j = 1}^{k} [ \pi(a_i, a_j) - \pi(a_j, a_i) ] \right] }_\text{= 0 by ind. hypothesis} + \ … $
    • $… \ + \underbrace{\left[ \cfrac{1}{k} \sum_{j=1}^{k+1} [ \pi(a_{k+1}, a_j) - \pi(a_j, a_{k+1}) ] + \cfrac{1}{k} \sum_{i=1}^{k+1} [ \pi(a_i, a_{k+1}) - \pi(a_{k+1}, a_i) ] \right] }_\text{= 0} = \ …$
  • $… \ = 0$

Preferential Independence

PROMETHEE respects the Preferential Independence hypothesis

Suppose we

  • divided the set of criteria $G$ into $J$ and $\overline{J}$ and
  • have alternatives $a,b,c,d \in A$ for which the following holds
  • $(*) \left{\begin{matrix} g_i(a) = g_i(b), \forall i \not \in J \ g_i(c) = g_i(d), \forall i \not \in J \ g_i(a) = g_i(a), \forall i \in J
    g_i(b) = g_i(d), \forall i \in J \end{matrix}\right. $

Now we show that $J$ is preferentially independent, i.e. $a \ P \ c \iff b \ P \ d$

  • compute the netflow score for $a$:
    • $\Phi(a) = \sum_{j = 1}^q w_i \cdot \Phi_j(a) = …$
    • since we have two subsets of criteria, we can rewrite it as following:
    • $… = \underbrace{\sum_{j \in J} w_j \Phi_j(a)}\text{(1)} + \sum{j \not \in J} w_j \Phi_j(a) = …$
    • for (1) because of (*) we can replace each $\Phi_j(a)$ with $\Phi_j(b)$
    • $… = \sum_{j \in J} w_j \Phi_j(b) + \sum_{j \not \in J} w_j \Phi_j(a)$
  • can do the same for $c$:
    • $\Phi(c) = \sum_{j = 1}^q w_i \cdot \Phi_j(c) = \underbrace{\sum_{j \in J} w_j \Phi_j(c)}\text{(2)} + \underbrace{\sum{j \not \in J} w_j \Phi_j(c)}_\text{(3)} = …$
    • because of (*) for (2) we can replace $\Phi_j(c)$ with $\Phi_j(d)$ and for (3) $\Phi_j(d)$ with $\Phi_j(a)$
    • $… = \sum_{j \in J} w_j \Phi_j(d) + \sum_{j \not \in J} w_j \Phi_j(a)$
  • $a \ P \ c \Rightarrow \Phi(a) > \Phi(c)$
    • thus $\sum_{j \in J} w_j \Phi_j(b) + {\color{red}{\sum_{j \not \in J} w_j \Phi_j(a)}} > \sum_{j \in J} w_j \Phi_j(d) + {\color{red}{\sum_{j \not \in J} w_j \Phi_j(a)}}$
    • we cross out the red parts and have the following:
    • $\sum_{j \in J} w_j \Phi_j(b) > \sum_{j \in J} w_j \Phi_j(d)$
    • now add $\sum_{j \not \in J} w_j \Phi(b)$ to both parts:
    • $\sum_{j \in J} w_j \Phi_j(b) + {\color{blue}{\sum_{j \not \in J} w_j \Phi(b)}} > \sum_{j \in J} w_j \Phi_j(d) + {\color{blue}{\sum_{j \not \in J} w_j \Phi(b)}}$
    • since $g_j(b) = g_j(d) \forall j \not \in J$, we have replace $b$ to $d$ on the right side
    • $\sum_{j \in J} w_j \Phi_j(b) + \sum_{j \not \in J} w_j \Phi(b) > \sum_{j \in J} w_j \Phi_j(d) + \sum_{j \not \in J} w_j {\color{blue}{\Phi(d)}}$
  • thus $b \ P \ d$

Arrow’s Impossibility Theorem

Monotonicity

The Monotonicity property is satisfied

Let’s show that

  • $A = {a, …, a_i, …, a_n}$ - set of alternatives, $F = {f_1, …, f_q}$ - set of criteria
  • let $A’$ be a set $A’ = {a, …, a’_i, …, a_n}$ where for $a’_i$:
    • $f_k(a’_i) > f_k(a_i)$ for some $f_k \in F$
    • $f_i (a’_i) = f_i (a_i)$ for all other criteria $f_j \in F, f_i \ne f_k$
    • i.e. $a’_i$, compared to $a_i$, improved its positions only in one criteria
  • let $\Phi’(a)$ be a netflow score for $a \in A’$
    • here we have:
    • $\pi_j (a’_i, b) = \pi_j (a_i, b)$ and $\pi_j (b, a’_i) = \pi_j (b, a_i)$ for all $j \ne k$
    • since $f_k(a’_i) > f_k(a_i)$ we have $\pi_k (a’_i, b) \geqslant \pi_k(a_i, b)$ and $\pi_k (b, a’_i) \leqslant \pi_k(b, a_i)$
  • calculate $\Phi’(a’_i)$:
    • $\Phi’(a’i) = \cfrac{1}{n - 1} \sum{b \in A’} [ \pi(a’_i, b) - \pi(b, a’_i) ] = \ …$
    • $… \ = \cfrac{1}{n - 1} \sum_{b \in A’} \left[ \sum_{j=1}^q w_j [ \pi_j(a’_i, b) - \pi_j(b, a’_i) ] \right] = \ …$ (now let’s take the item with $\pi_k$ out of the sum)
    • $… \ = \cfrac{1}{n - 1} \sum_{b \in A’} \left[ \sum_{j=1, j \ne k}^q w_j [ \pi_j(a’_i, b) - \pi_j(b, a’_i) ] + w_k {\color{blue}{[ \pi_k(a’_i, b) - \pi_k(b, a’_i) ]}} \right] = \ …$
    • consider $\pi_k(a’_i, b) - \pi_k(b, a’_i)$ alone:
      • $\pi_k (a’_i, b) \geqslant \pi_k(a_i, b)$ and $\pi_k (b, a’_i) \leqslant \pi_k(b, a_i)$
      • $\Rightarrow \pi_k(a’_i, b) - \pi_k(b, a’_i) \geqslant \pi_k(a_i, b) - \pi_k(b, a_i)$
    • that means that $\Phi’(a’_i) \geqslant \Phi(a_i)$
  • similarly, $\forall a \in A, a \ne a_i: \Phi’(a) \leqslant \Phi(a)$
    • $\Phi’(a) = \cfrac{1}{n - 1} \sum_{b \in A’} [ \pi(a’_i, b) - \pi(b, a’_i) ] = \ …$
    • there’s $a’_i$ somewhere in $b \in A’$ - let’s take it away from the sum
    • $… = \cfrac{1}{n - 1} \sum_{b \in A’, b \ne a’_i} [ \pi(a’_i, b) - \pi(b, a’_i) ] + \cfrac{1}{n-1} [ {\color{blue}{\pi(a, a_i) - \pi(a_i, a)}} ] $
    • the blue part is expanded to $\sum_{j = 1}^q w_j [ \pi_j(a, a’_i) - \pi_j(a’_i, a) ]$
    • we know that for one of these $j$ there’s $k$, move it from the sum
    • consider $\pi_k(a, a’_i) - \pi_k(a’_i, a)$ alone:
      • $\pi_k(a, a’_i) \leqslant \pi_k(a, a_i)$ and $\pi_k(a’_i, a) \geqslant \pi_k(a_i, a)$
      • thus $\pi_k(a, a’_i) - \pi_k(a’_i, a) \leqslant \pi_k(a, a_i) - \pi_k(a_i, a)$
    • that shows that $\Phi’(a) \leqslant \Phi(a)$

So we see that Monotonicity is satisfied

Sources

  • Decision Engineering (ULB)
  • An Introduction to Multicriteria Decision Aid: The PROMETHEE and GAIA Methods, Yves De Smet, Karim Lidouh, 2013