ML Wiki
Machine Learning Wiki - A collection of ML concepts, algorithms, and resources.

OLS Regression

Ordinary Least Squares Regression

Regression Problem

Suppose we have

  • $m$ training examples $(\mathbf x_i, y_i)$
  • $n$ features, $\mathbf x_i = \big[x_{i1}, \ … \ , x_{in} \big]^T \in \mathbb{R}^n$
  • We can put all such $\mathbf x_i$ as rows of a matrix $X$ (sometimes called a ‘‘design matrix’’)
  • $X = \begin{bmatrix}
  • \ \mathbf x_1^T - \ \vdots \
  • \ \mathbf x_m^T - \ \end{bmatrix} = \begin{bmatrix} x_{11} & \cdots & x_{1n} \ & \ddots & \ x_{m1} & \cdots & x_{mn} \ \end{bmatrix}$
  • the observed values: $\mathbf y = \begin{bmatrix} y_1 \ \vdots \ y_m \end{bmatrix} \in \mathbb{R}^{m}$
  • Thus, we expressed our problem in the matrix form: $X \mathbf w = \mathbf y$
  • Note that there’s usually additional feature $x_{i0} = 1$ - the slope,
    • so $\mathbf x_i \in \mathbb{R}^{n+1}$ and $X = \begin{bmatrix}
  • \ \mathbf x_1^T - \
  • \ \mathbf x_2^T - \ \vdots \
  • \ \mathbf x_m^T - \ \end{bmatrix} = \begin{bmatrix} x_{10} & x_{11} & \cdots & x_{1n} \ x_{20} & x_{21} & \cdots & x_{2n} \ & & \ddots & \ x_{m0} & x_{m1} & \cdots & x_{mn} \ \end{bmatrix} \in \mathbb R^{m \times n + 1}$

Thus we have a system

  • $X \mathbf w = \mathbf y$
  • how do we solve it, and if there’s no solution, how do we find the best possible $\mathbf w$?

Least Squares

Normal Equation

There’s no solution to the system, so we try to fit the data as good as possible

  • Let $\mathbf w$ be the best fit solution to $X \mathbf w \approx \mathbf y$
  • we’ll try to minimize the error $\mathbf e = \mathbf y - X \mathbf w$ (also called residuals)
  • we take the square of this error, so the objective is
  • $J(\mathbf w) = | \mathbf e |^2 = | \mathbf y - X \mathbf w |^2$

The solution:

  • $\mathbf w = (X^T X)^{-1} X^T \mathbf y = X^+ \mathbf y$
  • where $X^+ = (X^T X)^{-1} X^T$ is the Pseudoinverse of $X$

From the Linear Algebra point of view:

  • we need to solve $X \mathbf w = \mathbf y$
  • if $\mathbf y \not \in C(X)$ (Column Space) then there’s no solution
  • How to solve it approximately? Project on $C(A)$   - again, it gives us the Normal Equation: $X^T X \mathbf w = X^T \mathbf y$

Gradient Descent

Alternatively, we can use Gradient Descent:

  • objective is $J(\mathbf w) = | \mathbf y - X \mathbf w |^2$ - the derivative w.r.t. $\mathbf w$ is $\cfrac{\partial J(\mathbf w)}{\partial \mathbf w} = 2 X^T X \mathbf w - 2 X^T \mathbf y$
  • so the update rule is $\mathbf w \leftarrow \mathbf w - \alpha 2 (X^T X \mathbf w - X^T \mathbf y)$
  • where $\alpha$ is the learning rate

Example

Suppose we have the following dataset:

  • ${\cal D} = { (1,1), (2,2), (3,2) }$
  • the matrix form is $\begin{bmatrix} 1 & 1\ 1 & 2\ 1 & 3
    \end{bmatrix} \begin{bmatrix} w_0 \ w_1 \end{bmatrix} = \begin{bmatrix} 1 \ 2 \ 2 \end{bmatrix}$
  • no line goes through these points at once
  • so we solve $X^T X \mathbf{\hat w} = X^T \mathbf y$
  • $\begin{bmatrix} 1 & 1 & 1 \ 1 & 2 & 3 \ \end{bmatrix} \begin{bmatrix} 1 & 1\ 1 & 2\ 1 & 3
    \end{bmatrix} = \begin{bmatrix} 3 & 6\ 6 & 14
    \end{bmatrix}$
  • this system is invertible, so we solve it and get $\hat w_0 = 2/3, \hat w_1 = 1/2$
  • thus the best line is $h(t) = w_0 + w_1 t = 2/3 + 1/2 t$

Image

Normal Equation vs Gradient Descent

Gradient Descent:

  • need to choose learning rate $\alpha$
  • need to do many iterations
  • works well with large $n$

Normal Equation:

  • don’t need to choose $\alpha$
  • don’t need to iterate - computed in one step
  • slow if $n$ is large $(n \geqslant 10^4)$
  • need to compute $(X^T X)^{-1}$ - very slow
  • if $(X^T X)$ is not-invertible - we have problems

See Also

Sources