Orthogonal Matrices
Orthonormal Vectors
Vectors $\mathbf q_1, \ … \ , \mathbf q_n$ are ‘‘orthonormal’’ if they are orthogonal and unit vectors
- $\mathbf q_i \; \bot \; \mathbf q_j \ \forall i \ne j$ and
- $\mathbf q_i^T \mathbf q_j = 0$ if $i \ne j$ and $\mathbf q_i^T \mathbf q_j = 1$ otherwise
- these vectors make a good basis
Orthogonal Matrix
What about a matrix form?
- The second part of the definition: $\mathbf q_i^T \mathbf q_j =
\begin{cases}
1 & \text{if } i \ne j
0 & \text{if } i = j \end{cases}$ - how do we put it in a matrix form?
- Consider a matrix $Q$ whose columns are vectors $\mathbf q_1, \ … \ , \mathbf q_n$:
- let $Q = \Bigg[ \mathop{\mathbf q_1}\limits_| ^| \ \mathop{\mathbf q_2}\limits_|^| \ \cdots \ \mathop{\mathbf q_n}\limits_|^| \Bigg]$ |- $Q^T Q = \begin{bmatrix}
- \ \mathbf q_1^T - \
- \ \mathbf q_2^T -
\ - \ \mathbf q_n^T -
\end{bmatrix}
\Bigg[ \mathop{\mathbf q_1}\limits_| ^| \ \mathop{\mathbf q_2}\limits_|^| \ \cdots \ \mathop{\mathbf q_n}\limits_|^| \Bigg] = \begin{bmatrix} |1 & 0 & \cdots & 0
0 & 1 & \cdots & 0
& & \ddots &
0 & 1 & \cdots & 1 \end{bmatrix}$ by our definition| |- so $Q^T Q = I$ |- such $Q$’s are called ‘‘Orthogonal Matrices’’
A matrix $Q$ is orthogonal if
- its columns are orthonormal vectors
- and it’s square
What’s special about being square?
- if $Q^T Q = I$, then $Q^T = Q^{-1}$
Examples
Identity Matrices
Identity matrices are orthogonal:
- $Q = \begin{bmatrix}
1 & 0 & 0
0 & 1 & 0
0 & 0 & 1
\end{bmatrix} = I$ - $Q^T Q = I I = I$
Permutation Matrices
Permutation Matrices are orthogonal
- consider $Q = \begin{bmatrix}
0 & 0 & 1
1 & 0 & 0
0 & 1 & 0
\end{bmatrix}$ - then $Q^T = \begin{bmatrix}
0 & 1 & 0
0 & 0 & 1
1 & 0 & 0
\end{bmatrix}$ and indeed $Q^T Q = I$ - also note that $Q^T$ is also orthogonal
Rotation Matrices
Rotation Matrices are also orthogonal
- let $Q = \begin{bmatrix}
\cos \theta & -\sin \theta
\sin \theta & \cos \theta
\end{bmatrix}$ - it’s orthogonal
Not Orthogonal Example
Not orthogonal:
- $S = \begin{bmatrix}
1 & 1
1 & -1
\end{bmatrix}$ - why? $S^T S = \begin{bmatrix}
1 & 1
1 & -1
\end{bmatrix} \begin{bmatrix} 1 & 1
1 & -1
\end{bmatrix} = \begin{bmatrix} 2 & 0
0 & 2
\end{bmatrix}$ - how to fix it? they are not unit vectors, so need to normalize it:
- $Q = \cfrac{1}{\sqrt 2} \begin{bmatrix}
1 & 1
1 & -1
\end{bmatrix}$ - now $Q^T Q = \cfrac{1}{2} \begin{bmatrix}
2 & 0
0 & 2
\end{bmatrix} = I$ - this one is orthogonal
Usage
Projection
Why is it good to have orthogonal matrices?
- projections are easy:
- suppose we want to project onto the column space of $Q$
- so we have $P = Q (Q^T Q)^{-1} Q^T = Q I Q^T = Q Q^T$
- $Q Q^T$ is symmetric
- see Projection onto Subspaces#Projection onto Orthogonal Basis
Normal Equation
- $A^T A \mathbf{\hat x} = A^T \mathbf b$
- usual case (when $A$ is not orthogonal): $\mathbf{\hat x} = (A^T A)^{-1} A^T \mathbf b$
- orthogonal case: $\mathbf{\hat x} = (Q^T Q)^{-1} Q^T \mathbf b = Q^T \mathbf b$ - no inversion involved
- so can use $A = QR$ Factorization and get $\mathbf{\hat x} = R^{-1} Q^T \mathbf b$
Factorizations
Orthogonal matrices are very nice because it’s very easy to invert them
- therefore some factorizations are very popular
- e.g. Eigendecomposition or SVD
Orthogonalization
How do we make matrices orthogonal?
- Gram-Schmidt Process and QR Factorization
-
this preserves the column space $C(A)$ Also, - Eigendecomposition $A = Q \Lambda Q^T$ decomposes symmetric $A$ onto orthogonal $Q$ and diagonal $\Lambda$
- SVD $A = U \Sigma V^T$ decomposes $A$ onto orthogonal $U$ and $V$ and diagonal $\Sigma$
Properties
Transpose
If $Q$ is orthogonal matrix, then $Q^T$ is orthogonal as well
Matrix Multiplication
If $Q_1$ and $Q_2$ are orthogonal, so is $Q_1 \cdot Q_2$
Linear Transformation Properties
$Q$ preserves the $L_2$ norm:
-
$| Q \mathbf x | = | \mathbf x |$ - proof: $| Q \mathbf x |^2 = (Q \mathbf x)^T (Q \mathbf x) = \mathbf x^T Q^T Q \mathbf x = \mathbf x^T \mathbf x = | \mathbf x |^2$
$Q$ preserves the angle between $\mathbf x$ and $\mathbf y$
- $\langle Q \mathbf x, Q \mathbf y \rangle = \langle \mathbf x, \mathbf y \rangle$
- proof: $(Q \mathbf x)^T (Q \mathbf y) = \mathbf x^T Q^T Q \mathbf y = \mathbf x^T \mathbf y$
Sources
- Linear Algebra MIT 18.06 (OCW)
- http://inst.eecs.berkeley.edu/~ee127a/book/login/l_mats_qr.html